0
3.2kviews
Implement Y = A + B C using only NOR gates.
1 Answer
1
194views
| written 4.5 years ago by |
$Y = A+\bar{B}C $
Perform double inversion on both sides,
We know
$\overline { \overline{Y}} =Y$,
Thus,$Y=\overline{\overline{A+\bar{B}C}}$
By DeMorgan's Laws,
NOTE:
$\overline{X+Z}=\bar{X}\times\bar{Z}$ and $\overline{X \times Z}=\bar{X}+\bar{Z}$
Thus,we get:
$Y=\overline{\bar{A}\times\overline{\bar{B}C}}$
$Y = \overline{\bar{A}\times(\overline{\bar{B}}+\bar{C})}$
$Y = \overline{\bar{A}\times(B+\bar{C})}$
$Y = \overline{\bar{A}}+\overline{B+\bar{C}}$
$Y = A+\overline{B+\bar{C}}$
Again taking double inversion;
$Y = \overline{\overline{A+\overline{B+\bar{C}}}}$
We can …
ADD COMMENT
EDIT
Please log in to add an answer.

and 3 others joined a min ago.
and 2 others joined a min ago.