0
549views
Minimum the following using Quine Mc Clusky method
F(A,B,C,D)=Σm(3,4,9,13,14,15) + Σd(5,6)
1 Answer
| written 4.5 years ago by |
Step 1: Input Grouping the minterms/don't care terms based on number of 1's
| Group | Minterm/Don't Care terms | Binary Representation | |||
|---|---|---|---|---|---|
| 0 | - | - | - | - | - |
| 1 | 4 | 0 | 1 | 0 | 0 |
| 2 | 3 |
9 5 6 | 0 1 0 0 | 0 0 1 1 | 1 0 0 1 | 1 1 1 0 | | 3 | 13 14 | 1 1 | 1 1 | 0 1 | 1 0 | | 4 | 15 | 1 | 1 | 1 | 1 |
Step 2: First Comparison Group the terms in pairs:
| Group | Pairs | Binary Representation | |||
|---|---|---|---|---|---|
| 0 | - | - | - | - | - |
| 1 | 5, 4 | ||||
| 6, 4 | 0 | ||||
| 0 | 1 | ||||
| 1 | 0 | ||||
| - | - | ||||
| 0 | |||||
| 2 | 13, 9 |
13, 5 14, 6 | 1 - - | - 1 1 | 0 0 1 | 1 1 0 | | 3 | 15, 13 15, 14 | 1 1 | 1 1 | - 1 | 1 - | Step 3: Prime Implicants:
(5, 4) 0 1 0 -
(6, 4) 0 1 - 0
(13, 9) 1 - 0 1
(13, 5) 1 0 1
(13, 6) 1 1 0
(15, 13) 1 1 - 1
(15, 14) 1 1 1 -
Step 4: Coverage Table
| 010- | 01-0 | 1-01 | -101 | -110 | 11-1 | 111- | 0011 | |
|---|---|---|---|---|---|---|---|---|
| 3 | x | |||||||
| 4 | x | x | ||||||
| 9 | x | |||||||
| 13 | x | x | x | |||||
| 14 | x | x | ||||||
| 15 | x | x |
$\bar{A}\bar{B}CD + A\bar{C}D$
Verify the output using this handy tool