0
549views
Minimum the following using Quine Mc Clusky method F(A,B,C,D)=Σm(3,4,9,13,14,15) + Σd(5,6)
1 Answer
0
0views

Step 1: Input Grouping the minterms/don't care terms based on number of 1's

Group Minterm/Don't Care terms Binary Representation
0 - - - - -
1 4 0 1 0 0
2 3

9 5 6 | 0 1 0 0 | 0 0 1 1 | 1 0 0 1 | 1 1 1 0 | | 3 | 13 14 | 1 1 | 1 1 | 0 1 | 1 0 | | 4 | 15 | 1 | 1 | 1 | 1 |  

Step 2: First Comparison Group the terms in pairs:

Group Pairs Binary Representation
0 - - - - -
1 5, 4
6, 4 0
0 1
1 0
- -
0
2 13, 9

13, 5 14, 6 | 1 - - | - 1 1 | 0 0 1 | 1 1 0 | | 3 | 15, 13 15, 14 | 1 1 | 1 1 | - 1 | 1 - | Step 3: Prime Implicants:

(5, 4) 0 1 0 -

(6, 4) 0 1 - 0

(13, 9) 1 - 0 1

(13, 5) 1 0 1

(13, 6) 1 1 0

(15, 13) 1 1 - 1

(15, 14) 1 1 1 -

Step 4: Coverage Table

010- 01-0 1-01 -101 -110 11-1 111- 0011
3 x
4 x x
9 x
13 x x x
14 x x
15 x x

$\bar{A}\bar{B}CD + A\bar{C}D$

Verify the output using this handy tool

Please log in to add an answer.