0
628views
For the following function find the reduced Boolean equations using Quine McClusky method;
F(A,B,C,D)=?m(1,3,4,6,9,11,12)+?d(5,8,15)
1 Answer
| written 4.5 years ago by |
Step 1: Input Grouping the minterms/don't care terms based on number of 1's
| Group | Minterm/Don’t care terms | Binary Representation | |||
|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 0 | 1 |
| 4 | 0 | 1 | 0 | 0 | |
| 8 | 1 | 0 | 0 | 0 | |
| 2 | 3 | 0 | 0 | 1 | 1 |
| 6 | 0 | 1 | 1 | 0 | |
| 9 | 1 | 0 | 0 | 1 | |
| 12 | 1 | 1 | 0 | 0 | |
| 5 | 0 | 1 | 0 | 1 | |
| 3 | 11 | 1 | 0 | 1 | 1 |
| 4 | 15 | 1 | 1 | 1 | 1 |
Step 2: First Comparison Group the terms in pairs:
| Group | Pairs | Binary Representation | |||
|---|---|---|---|---|---|
| 1 | (1,3) | 0 | 0 | - | 1 |
| (1,9) | - | 0 | 0 | 1 | |
| (1,5) | 0 | - | 0 | 1 | |
| (4,6) | 0 | 1 | - | 0 | |
| (4,12) | - | 1 | 0 | 0 | |
| (4,5) | 0 | 1 | 0 | - | |
| (8,9) | 1 | 0 | 0 | - | |
| (8,12) | 1 | - | 0 | 0 | |
| 2 | (3,11) | - | 0 | 1 | 1 |
| (9,11) | 1 | 0 | - | 1 | |
| 3 | (11,15) | 1 | - | 1 | 1 |
Step 3: Second Comparison
| Group | Pairs | Binary Representation | |||
|---|---|---|---|---|---|
| 0 | (1,3,9,11) | - | 0 | - | 1 |
Step 4: Prime Implicants:
(1,3,9,11) - 0 - 1
(1,5) 0 - 0 1
(4,6) 0 1 - 0
(4,12) - 1 0 0
(4,5) 0 1 0 -
(8,9) 1 0 0 -
(8,12) 1 - 0 0
(11,15) 1 - 1 1
Step 4: Coverage Table
| -0-1 | 0-01 | 01-0 | -100 | 010- | 100- | 1-00 | 1-11 | |
|---|---|---|---|---|---|---|---|---|
| 1 | x | x | ||||||
| 3 | x | |||||||
| 4 | x | x | x | |||||
| 6 | x | |||||||
| 9 | x | x | ||||||
| 11 | x | x | ||||||
| 12 | x | x |
$F=B'D+A'BD'+BC'D'$
Verify the output using this handy tool