0
1.8kviews
Implement the following boolean expression using 8:1 mux \[f\left(A,B,C,D\right)=\bar{A}\ \bar{B}\bar{C}+ABC+\bar{B}CD+\bar{A}CD\]
written 3.8 years ago by |
The given boolean expression is not in standard SOP form.
First convert this into standard SOP form.
$\begin{align*} F(A,B,C,D) &=\bar A\bar B\bar D(C+\bar C)+ABC(D+\bar D)+\bar BCD(A+\bar A)+\bar ACD(B+\bar B)\\[2ex] &=\bar A\bar BC\bar D+\bar A\bar B\bar C\bar D+ABCD+ABC\bar D\\& +A\bar BCD+\bar A\bar BCD+\bar A BCD+\bar A\bar BCD\\[2ex] &=\bar A\bar BC\bar D+\bar A\bar B\bar C\bar D+ABCD+ABC\bar D\\& +A\bar B CD+\bar A\bar BCD+\bar A BCD \end{align*}$
The truth table for this standard SOP form,
No | Minterm | A | B | C | D | Y |
---|---|---|---|---|---|---|
0 | $\bar A\bar B\bar C\bar D$ | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | |
2 | $\bar A\bar BC\bar D$ | 0 | 0 | 1 | 0 | 1 |
3 | $\bar A\bar BCD$ | 0 | 0 | 1 | 1 | 1 |
4 | 0 | 1 | 0 | 0 | 0 | |
5 | 0 | 1 | 0 | 1 | 0 | |
6 | 0 | 1 | 1 | 0 | 0 | |
7 | $\bar ABCD$ | 0 | 1 | 1 | 1 | 1 |
8 | 1 | 0 | 0 | 0 | 0 | |
9 | 1 | 0 | 0 | 1 | 0 | |
10 | 1 | 0 | 1 | 0 | 0 | |
11 | $A\bar BCD$ | 1 | 0 | 1 | 1 | 1 |
12 | 1 | 1 | 0 | 0 | 0 | |
13 | 1 | 1 | 0 | 1 | 0 | |
14 | $ABC\bar D$ | 1 | 1 | 1 | 0 | 1 |
15 | $ABCD$ | 1 | 1 | 1 | 1 | 1 |
Implementation table,
$D_0$ | $D_1$ | $D_2$ | $D_3$ | $D_4$ | $D_5$ | $D_6$ | $D_7$ | |
---|---|---|---|---|---|---|---|---|
$\bar A$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
$A$ | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | $\bar A$ | 0 | $\bar A$ | 1 | 0 | 0 | $A$ | 1 |