0
702views
For the following function find reduced Boolean equation using Quine McClusky method;
F(A,B,C,D)= ?m(1,3,4,6,9,11,12,14)+?d(2,5,8,15)
1 Answer
| written 4.5 years ago by |
Step 1: Input Grouping the minterms/don't care terms based on number of 1's
| Group | Minterm/Don’t care terms | Binary representation | |||
|---|---|---|---|---|---|
| 0 | - | - | - | - | - |
| 1 | 1 | 0 | 0 | 0 | 1 |
| 4 | 0 | 1 | 0 | 0 | |
| 2 | 0 | 0 | 1 | 0 | |
| 8 | 1 | 0 | 0 | 0 | |
| 2 | 3 | 0 | 0 | 1 | 1 |
| 6 | 0 | 1 | 1 | 0 | |
| 9 | 1 | 0 | 0 | 1 | |
| 12 | 1 | 1 | 0 | 0 | |
| 5 | 0 | 1 | 0 | 1 | |
| 3 | 11 | 1 | 0 | 1 | 1 |
| 14 | 1 | 1 | 1 | 0 | |
| 4 | 15 | 1 | 1 | 1 | 1 |
Step 2: First Comparison Group the terms in pairs:
| Group | Pairs | Binary representation | |||
|---|---|---|---|---|---|
| 0 | - | - | - | - | - |
| 1 | (3,1) | 0 | 0 | - | 1 |
| (9,1) | - | 0 | 0 | 1 | |
| (5,1) | 0 | - | 0 | 1 | |
| (6,4) | 0 | 1 | - | 0 | |
| (12,4) | - | 1 | 0 | 0 | |
| (5,4) | 0 | 1 | 0 | - | |
| (3,2) | 0 | 0 | 1 | - | |
| (6,2) | 0 | - | 1 | 0 | |
| (9,8) | 1 | 0 | 0 | - | |
| (12,8) | 1 | - | 0 | 0 | |
| 2 | (11,3) | - | 0 | 1 | 1 |
| (14,6) | - | 1 | 1 | 0 | |
| (11,9) | 1 | 0 | - | 1 | |
| (14,12) | 1 | 1 | - | 0 | |
| 3 | (15,11) | 1 | - | 1 | 1 |
| (15,14) | 1 | 1 | 1 | - |
Step 3: Second Comparison
| Group | Pairs | Binary representation | |||
|---|---|---|---|---|---|
| 0 | - | - | - | - | - |
| 1 | (11,9.3,1) | - | 0 | - | 1 |
| (14,12,6,4) | - | 1 | - | 0 |
Step 4: Prime Implicants
(11,9,3,1) - 0 - 1
(14,12,6,4) - 1 - 0
(5,1) 0 - 0 1
(5,4) 0 1 0 -
(3,2) 0 0 1 -
(6,2) 0 - 1 0
(9,8) 1 0 0 -
(12,8) 1 - 0 0
(15,11) 1 - 1 1
(15,14) 1 1 1 -
Step 4: Coverage Table
| -0-1 | -1-0 | 0-01 | 010- | 001- | 0-10 | 100- | 1-00 | 1-11 | 111- | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | x | x | ||||||||
| 3 | x | x | ||||||||
| 4 | x | x | ||||||||
| 6 | x | x | ||||||||
| 9 | x | x | ||||||||
| 11 | x | x | ||||||||
| 12 | x | x | ||||||||
| 14 | x | x |
$F=BD'+B'D$
To verify the output use this handy tool.