| written 9.5 years ago by |
Given, f(u) = $\int\limits_{0}^{t} ue^{-3u} sin4udu$
We shall first find L[sin(4u)]
$\therefore$ L[sin(4u)] = $\frac{4}{s^2 + 4^2}$ = $\frac{4}{s^2 + 16}$
L[e$^ {-3u}$sin4u] = $\frac{4}{(s+3)^2 + 16}$ [By first shifting property]
[First shifting property L[$e^{at} f(t)$] = $f(s - a)$]
Now by theorem of multiplication of 't', here in this case 'u' we have
L[$ue^{-3u} sin4u$] = (-1) $\frac{d}{ds} \frac{4}{(s + 3)^2 + 16}$
$\therefore$ L[$ue^{-3u} sin4u$] = (-1) $\frac{d}{ds} \frac{4}{s^2 + 6s + 25}$
$\therefore$ L[$ue^{-3u} sin4u$] = (-1) {$ \frac{s^2 + 6s + 25(0) - 4(2s + 6)} {(s^2 + 6s + 25)^2}$}
$\therefore$ L[$ue^{-3u} sin4u$] = (-1) {$\frac{-8(s + 3)}{(s^2 + 6s + 25)^2}$}
$\therefore$ L[$ue^{-3u} sin4u$] = $\frac{8(s+3)}{(s^2 + 6s + 25)^2}$
Hence, finally by theorem of Laplace transform integral.
We have
L[$\int\limits_{0}^{t} ue^{-3u} sin4u du$] = $\frac{8(s+3)}{(s^2 + 6s + 25)^2}$
$\because$ L[$\int\limits_{0}^{t} f(t) dt$] = $\frac{1}{s}F(s)$
$\therefore$ L[$\int\limits_{0}^{t} ue^{-3u} sin4u du$] = $\frac{1}{s}${$\frac{8(s+3)}{(s^2 + 6s + 25)^2}$}

and 3 others joined a min ago.