0
1.1kviews
Evaluate $\int\limits_0^1\int\limits_0^{1-x}\int\limits_0^{1-x-y}\dfrac {dx\space dy\space dz}{(1+x+y+z)^3}$
1 Answer
0
1views
| written 9.5 years ago by | • modified 9.5 years ago |
Integrating first w.r.t z we get
$\int\limits_0^{1}\int\limits_0^{1-x}\Bigg[\int\limits_0^{z=1-x-y}(1+x+y+z)^3dz\Bigg]dxdy$
$\int\limits_0^{1}\int\limits_0^{1-x}\dfrac 1{-2}\Bigg[\dfrac 1{(1+x+y+z)^2}\Bigg]^{1-x-y}_0dxdy$
$\dfrac 1{-2}\int\limits_0^{1}\int\limits_0^{1-x}\Bigg[\dfrac 1{(1+x+y+1-x-y)^2}-\dfrac 1{(1+x+y)^2}\Bigg]dxdy$
$\dfrac 1{-2}\int\limits_0^{1}\int\limits_0^{1-x}\Bigg[\dfrac 1{2^2}-\dfrac 1{(1+x+y)^2}\Bigg]dxdy$
Now integrating w.r.t x
$\dfrac 1{-2}\Bigg[\dfrac x4-\dfrac {x^2}8 +\dfrac x2 -\log(1-x)\Bigg]^1_0$
Putting upper and lower limits
We get
$=\dfrac 1{-2}\Bigg[\dfrac 14-\dfrac {1}8 +\dfrac 12 -\log 2\Bigg]$
$=\dfrac 1{-2}\Bigg[\dfrac 58 -\log 2\Bigg]$
$=\dfrac 1{2}\Bigg[\log 2 -\dfrac 58\Bigg]$
ADD COMMENT
EDIT
Please log in to add an answer.

and 3 others joined a min ago.