| written 9.5 years ago by |
Putting $x+y=v$
Different w.e.t x
$1+\dfrac {dy}{dx}=\dfrac {dv}{dx}$
Hence the given equation reduces to
$\dfrac {dv}{dx} + xv =x^3v^3$
$\dfrac 1{v^3}\dfrac {dv}{dx} +\dfrac x{v^2}=x^3$
Putting $\dfrac 1{v^2}=t\hspace {3 cm }\therefore {\dfrac {-2}{v^3}} \dfrac {dv}{dx}=\dfrac {dt}{dx}$
we get
$\dfrac {-1}2\dfrac {dt}{dx} + x\varepsilon =x ^3$
$\therefore \dfrac {dt}{dx}-2xt=-2x^3$
Here $,P=2x,Q=-2 $ & $ n=3$
This is a linear differential equation
$I.F. =e^{\int e\space dx}=e^{\int -2x\space dx}=e^{-x^2}$
$\therefore$ The Solution is
$t.e^{-x^2}=\int e^{-x^2}x(-2x^3)dx + c$
Now put $–x^2=U$
$-2dx=du$
$te^{-x^2}=\int e^U\times - U du + c$
Integration by parts we get
$te^{-x^2}=-[ue^u-\int 1e^U du] $
$te^{-x^2}=-[ue^u- e^U ] + c $
$te^{-x^2}= e^U-ue^u + c $
Re-substituting value of U
$te^{-x^2}= e^{-x^2}+x^2e^{-x^2} + c $
$=e^{-x^2} (x^2+1)+ c$

and 2 others joined a min ago.