0
5.6kviews
Solve $(x^2-4xy-2y^2)dx + (y^2-4xy-2x^2)dy=0$
1 Answer
| written 9.5 years ago by |
Here $M= x^2-4xy-2y^2 $ & $ N= y^2-4xy-2x^2 $
$\dfrac {\partial M}{\partial y}=0-4x-4y$
$\dfrac {\partial N}{\partial x}=0-4y-4x$
Here,
$\dfrac {\partial M}{\partial y}=\dfrac {\partial N}{\partial x}$
Thus the equation is exact
$\therefore \int M dx=\int x^2-4xy-2y^2 dx$
$=\dfrac {x^3}3-\dfrac{4x^2}2 y -2y^2x$
And $\int$ terms in N free of $xdy =\int y^2 dy$
$=y^3/3$
$\therefore $ The solution is
$\dfrac {x^3}3-2x^2y-2xy^2 +\dfrac {y^3}3=c $