0
2.8kviews
Find Laplace Transform of $\frac{d}{dt} \bigg [ \frac{sint}{t} \bigg ] $
1 Answer
0
165views
| written 9.5 years ago by |
Here, f(t) = $\frac{sint}{t}$
We first take,
L[sint] = $\frac{1}{s^2 + 1}$
then,
$L \bigg[\frac{sint}{t} \bigg] = \int\limits_{s}^{\infty} \frac{1}{s^2 + 1} ds$
$\therefore L \bigg[\frac{sint}{t} \bigg] = \big[tan^ {-1} (s) \big]_{s}^{\infty}$
$\therefore L \bigg[\frac{sint}{t} \bigg] = tan^{-1} (\infty) - tan^{-1}(s)$
$\therefore L \bigg[\frac{sint}{t} \bigg] = \frac{\pi}{2} - tan^{-1}(s)$
$\therefore L \bigg[\frac{sint}{t} \bigg] = cot^{-1}(s)$
Now, $L\bigg[\frac{d}{dt} \bigg(\frac{sint}{t} \bigg) \bigg] = sf(s) - f(0)$
$\therefore f(0) = cot^{-1} (0) = \frac{\pi}{2}$
$L\bigg[\frac{d}{dt} \bigg(\frac{sint}{t} \bigg) \bigg] = s cot^{-1} (s) - \frac{\pi}{2}$
ADD COMMENT
EDIT
Please log in to add an answer.

and 2 others joined a min ago.