| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 6
Year : 2014
| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 6
Year : 2014
| written 9.5 years ago by |
If $y=0 x=-7$ or $x=-4$ the loop
Let s be the total length of loop

$S=2\int\limits_{-7}^{-4}\sqrt{1+(\dfrac{dy}{dx})^2}.$dx
Now
$18y\dfrac{dy}{dx}=(x+7)2(x+4)+(x+4)^2$
$\dfrac{dy}{dx}=\dfrac{(x+4)(2x+14+x+4)}{18y}$
$\dfrac{dy}{dx}=\dfrac{(x+4)(x+6)}{6y}$
$1+\Bigg(\dfrac{dy}{dx}\Bigg)^2=1+\dfrac{(x+4)^2(x+6)^2}{36y^2}$
$1+\Bigg(\dfrac{dy}{dx}\Bigg)^2=1+\dfrac{(x+4)^2(x+6)^2}{4(x+7)(x+4)^2}$
$(ay^2=(x+7)(x+4)^2)$
$\therefore 1+\Bigg(\dfrac{dy}{dx}\Bigg)^2=1+\dfrac{x^2+12x+36}{4x+28}$
$\therefore 1+\Bigg(\dfrac{dy}{dx}\Bigg)^2=1+\dfrac{4x+28+x^2+12x+36}{4(x+7)}$
$\therefore 1+\Bigg(\dfrac{dy}{dx}\Bigg)^2=1+\dfrac{(x+8)^2}{4(x+7)}$
$S=2\int\limits_{-7}^{-4}\dfrac{x+8}{2\sqrt{x+7}}$dx
put $x+7=t^2$ when $x=-4 \space \space t=\sqrt3$
$dx=2t\space dt\hspace {2cm } X=-7\space \space t=0$
$S=2\int\limits_0^{\sqrt3}\dfrac{t^2+1}{2t}.2t$dt
$S=2\int\limits_0^{\sqrt3}(t^2+1)$dt
$=2\Bigg[\dfrac{t^3}3 + t\Bigg]_0^{\sqrt3}$
$=2\Bigg[\dfrac{3\sqrt3}3+\sqrt3\Bigg]$
$=4\sqrt3$