| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 8
Year : 2014
| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 8
Year : 2014
| written 9.5 years ago by |
Let I (a) be the given integral sign
$\dfrac {dI}{da}=\int\limits_0^{\infty}\dfrac {\partial f}{\partial a}dx=\int\limits_0^{\infty}\dfrac {\cos\lambda x}x(e^{-ax})x(-x)dx$
$= -\int\limits_0^{\infty}e^{-ax}\cos\lambda x dx$
$= \Bigg[\dfrac{e^{-ax}}{a^2+\lambda^2}(-a\cos\lambda x+\lambda\sin\lambda x)\Bigg]_0^{\infty}$
$\therefore \dfrac {dI}{da}=-\Bigg[0-\dfrac 1{a^2+\lambda^2}(-a)\Bigg]$
$\therefore \dfrac {dI}{da}= \dfrac{-a}{a^2+\lambda^2}$
Integrating both sides we get
$I=\dfrac {-1}2\log(a^2+\lambda^2)+ c \hspace {2 cm}\text{Direct Formula}$
To find c we put a = b
$\therefore I(b)=\dfrac {-1}2\log(b^2+\lambda^2)+ c$
But $I(b)=\int\limits_0^{\infty}\dfrac {\cos\lambda x}x(e^{-bx}-e^{-bx})$ dx
$=\int\limits_0^{\infty}0dx$
$=0$
$c=\dfrac 12\log(b^2+\lambda^2)$
$I=\dfrac {-1}2\log(a^2+\lambda^2)+\dfrac 12\log(b^2+\lambda^2)$
$=\dfrac 12\log\Bigg(\dfrac{b^2+\lambda^2}{a^2+\lambda^2}\Bigg)$