| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 4
Year : 2015
| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 4
Year : 2015
| written 9.5 years ago by |
Comparing it with $Mdx+Ndy=0$ we get,
$M=1+e^{\dfrac xy}$
$N=e^{\dfrac xy}(1-\dfrac xy)$
$\dfrac {\partial M}{\partial y}=e^{\dfrac xy}\Bigg(\dfrac {-x}{y^2}\Bigg)$
$\dfrac {\partial N}{\partial x}=e^{\dfrac xy}\times \dfrac {\partial}{\partial x}\Bigg(1-\dfrac xy\Bigg) + \Bigg(1-\dfrac xy\Bigg)\dfrac {\partial}{\partial x}e^{\dfrac xy} $
$\therefore\dfrac {\partial N}{\partial x}=e^{\dfrac xy}\times \Bigg(\dfrac {-1}y\Bigg) + \Bigg(1-\dfrac xy\Bigg)e^{\dfrac xy} \times\dfrac 1y$
$=e^{\dfrac xy}\Bigg(1-\dfrac xy\Bigg)\dfrac 1y-\dfrac 1ye^{\dfrac xy}$
$=e^{\dfrac xy}\Bigg[\dfrac 1y-\dfrac x{y^2}-\dfrac 1y\Bigg]$
$=\dfrac {-x}{y^2}e^{x/y}$
Now $\dfrac {\partial M}{\partial y}=\dfrac {\partial N}{\partial x},$ the equation is exact
$\therefore \int Mdx=\int 1+e^{x/y}dx=x+ ye^{x/y} + c$
$\int$ N free from x=0
$\therefore $ The solution is $x+ye^{x/y} + c$