| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 6
Year : 2015
| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 6
Year : 2015
| written 9.5 years ago by |
Comparing it with $Mdx+Ndy =0$ we get
$M=xy\cos x-y\sin x-2$
$\dfrac {\partial M}{\partial y}=x\cos x-\sin x$
$N=x\sin x$
$\dfrac {\partial N}{\partial x}=x\cos x+\sin x$
$\dfrac {\partial M}{\partial y}-\dfrac {\partial N}{\partial x}=x\cos x-\sin x -x\cos x-\sin x$
$=-2\sin x$
$\therefore \dfrac {\dfrac {\partial M}{\partial y}-\dfrac {\partial N}{\partial x}}N=\dfrac {-2\sin x}{x\sin x}=\dfrac {-2}x=f(x) $
$\therefore I.F.=e^{\int -2/x}dx$
$=e^{-2\log x}$
$=e^{\log 1/x^2}$
$=\dfrac 1{x^2}$
Multiplying By I.F. we get
$\dfrac {\sin x}x dy+\Bigg(\dfrac yx\cos x-\dfrac y{x^2}\sin x-\dfrac 2{x^2}\Bigg)dx=0$
Which is exact.
$\int Mdx=\int\Bigg(\dfrac yx\cos x-\dfrac y{x^2}\sin x-\dfrac 2{x^2}\Bigg)dx$
$=\int\Bigg[\dfrac yx\Bigg[1-\dfrac {x^2}{2!}+\dfrac {x^4}{4!}-----\Bigg]-\dfrac y{r^2}\Bigg[x-\dfrac {x^3}{3!}+\dfrac {x^5}{5!}---\Bigg]-\dfrac 2{x^2}\Bigg]dx$
$\Bigg[y\Bigg\{\Bigg[\dfrac 1x-\dfrac 1x\Bigg]-\Bigg[\dfrac x{2!}-\dfrac x{3!}\Bigg]----\Bigg\}-\dfrac 2{x^2}\Bigg]dx$
$\therefore \int Mdx=y\dfrac {x^2}2\times \dfrac {(3!.2!)}{2!\times3!}+j\dfrac {x^4(5!-4!)}{5!\times4!}+\dfrac 2x$
$\int$ N free space x=0
$\therefore$ The solution Is $y\dfrac {x^2}2\times \dfrac {(3!-2!)}{2!\times3!}+y\dfrac {x^4}4\times \dfrac {(5!-4!)}{5!\times4!}+\dfrac 2x + c$