0
1.1kviews
$\dfrac {dy}{dx}+\dfrac {4x}{x^2+1}y=\dfrac 1{(x^2+1)^3}$
1 Answer
| written 9.5 years ago by |
This is a differential equation of the form
$\dfrac {dy}{dx}+ Py=Q$
$\therefore P=\dfrac {4x}{x^2+1},Q=\dfrac 1{(x^2+1)^3}$
$I.F.=e^{\dfrac {4x}{x^2+1}}dx$
$=e^{2\log(x^2+1)^2}$
$=(x^2+1)^2$
The solution is,
$y\times(x^2+1)^2=\int\dfrac 1{(x^2+1)^3}\times(x^2+1)^2dx$
$=\int\dfrac 1{x^2+1}dx$
$=\tan^{-1}x+ c$
$\therefore y=\dfrac 1{(x^2+1)^2}\tan^{-1}x+\dfrac c{(x^2+1)^2}$
$\therefore y-\dfrac 1{(x^2+1)^2}\tan^{-1}x=\dfrac c{(x^2+1)^2}$