| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 6
Year : 2015
| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 6
Year : 2015
| written 9.5 years ago by | • modified 9.5 years ago |
$(x^3y^3 - xy) = dx /dy\\$
$\dfrac {dx}{dy}+xy=x^3y^3\\\ $
Dividing by $x^3$ we get $\\ $
$\dfrac 1{x^3}\dfrac {dx}{dy}+\dfrac 1{x^2}y=y^3----- \gt(1)\\\ $
Let $\dfrac1{x^2}=v\hspace {1cm}\text{diff w.r.t y}\\\ $
$\therefore\dfrac {dv}{dy} =\dfrac{-2}{x^3}\dfrac {dx}{dy}\\\ $
Substituting these values in eq (1) $\\ $
We get $\\ $
$\dfrac {-1}2\dfrac {dv}{dy}+ vy=y^3 \\ $
$\therefore \dfrac {dv}{dy}+(-2y)v=-2y^3 \\ $
Which is of the type $\\ $
$\dfrac {dv}{dy}=P'v=Q' \\ $
Where $p’ = -2y$ and $Q’ = -2y^3 \\ $
Therefore it is a linear differential equation $\\ $
$\therefore If=e^{\int fdy}=e^{\int -2ydy} \\ $
$=e^{\dfrac{-2y^2}2} \\ $
$=e^{-y^2} \\ $
Solution is $ \\ $
$v\times e^{-y^2}=\int-UC^UdU \\ $
Integration by parts we get $\\ $
$=-\Bigg[U\int e^UdU-\int\Bigg[\dfrac {dU}{dU}\int C^UdU\Bigg]dU\Bigg] \\ $
$=-[Ue^U-e^U]+C \\ $
$=e^U(1-U)+C \\ $
Resubstituting values of U we get $\\ $
$V\times e^{-y^2}=e^{-y^2}(1+y^2)+C \\ $
Where $V=\dfrac 1{x^2}\\ $
$\therefore \dfrac 1{x^2}=1+y^2+Ce^{y^2}\\ $