| written 9.5 years ago by | modified 3.8 years ago by |
Find current I at time t if t = 0 I = U and L, R, E are constants.
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 6
Year : 2013
| written 9.5 years ago by | modified 3.8 years ago by |
Find current I at time t if t = 0 I = U and L, R, E are constants.
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 6
Year : 2013
| written 9.5 years ago by | • modified 9.5 years ago |
$$L\frac {di}{dt}+Ri=E$$ $$\therefore\frac{di}{dt}+\frac{Ri}{L}=\frac{E}{L}$$ Which is same as that of $$\frac{di}{dt}+pi=Q$$
Here $p=\frac{R}{L} \ and \ Q=\frac{E}{L}$
The given D.E is linear equation
$I.f$ $=e^{\int pdt} \\ =e^{\int\frac{R}{L}dt} \\ =e^{\frac{Rt}{L}}$
The solution is
$i{\times} I.f =\int I.f\times Qdt$
$i{\times}e^{Rt/L}$ $=\int\frac{E}{L}{\times} e^{Rt/L}dt \\ =\frac{E}{L}\int e^{Rt/L}dt \\ =\frac{E}{L}\frac {e^{Rt/L}}{R/L} +C \\ =\frac{E}{R}e^{Rt/L}+C \\ \therefore i=\dfrac ER+ce^{-Rt/L}...........(1)$
At $t=0 \ \ \ \ i=0$
$\therefore 0=\dfrac ER +C \\ \therefore C=\dfrac {-E}R$
Eq (1) becomes
$i=\dfrac ER-\dfrac ER\Big(e^{-RT/L}\Big) \\ i=\dfrac ER\Big(e^{-RT/L}\Big)$