0
2.0kviews
Evaluate by using Laplace transformation $\int\limits_{0}^{\infty}e^{-3t}tcostdt$
1 Answer
1
17views
| written 9.5 years ago by |
The above equation is of type $\int\limits_{0}^{\infty}e^{-3t}tcostdt$ where s = 3
Taking Laplace of tcost i.e. f(t) and substitutitng s = 3
$\therefore L[cost] = \frac{s}{s^2 + 1}$
$\therefore L[tcost] = -1\frac{d}{ds}\bigg[\frac{s}{s^2 + 1}\bigg]$ By multiplication by t rule
$\therefore L[tcost] = -1\bigg[\frac{(s^2 + 1)\frac{d}{ds}s - s\frac{d}{ds}(s^2 + 1)}{(s^2 + 1)^2}\bigg]$
$\therefore L[tcost] = -1\bigg[\frac{(s^2 + 1) - 2s^2}{(s^2 + 1)^2}\bigg]$
$\therefore L[tcost] = -1\frac{(1 - s^2)}{(s^2 + 1)^2}$
$\therefore L[tcost] = \frac{s^2 - 1}{(s^2 + 1)^2}$
Now s = 3 we get
$\int\limits_{0}^{\infty}e^{-3t}tcostdt = \frac{8}{100} = \frac{2}{25}$
ADD COMMENT
EDIT
Please log in to add an answer.

and 3 others joined a min ago.