| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 6
Year : 2013
| written 9.5 years ago by | modified 3.8 years ago by |
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 6
Year : 2013
| written 9.5 years ago by | • modified 9.5 years ago |
$$(x^3y^4+ x^2y^3+xy^2+y)dx + (x^4y^3-x^3y^2-x^2y + x)dy = 0$$
$\therefore [x^2y^3(xy+1)+y(xy+1)]dx+[x^4y^3-x^3y^2-x^2y + x]dy = 0$
$\therefore (xy+1)(x^2y^3+y)dx + [x(x^3y^3+1)-x^2y(xy+1)]dy=0$
Expanding $x^3y^3+1$ as $(a^3+b^3)$
We get
$\therefore (xy+1)(x^2y^3+y)dx+[x(xy+1)(x^2y^2-xy+1)-x^2y(xy+1)]dy=0$
Dividing by $(xy+1)$
we get
$y(x^2y^2+1)dx + x (x^2y^2-2xy+1)dy = 0 -----(1)$
$\therefore M=y(x^2y^2+1) \space \& \space N=(x^2y^2-2xy+1)x$
Comparing it with
$Mdx + Ndy =0$
$Mx-Ny=xy(x^2y^2+1)-xy(x^2y^2-2xy+1)$
$=xy(x^2y^2+1-x^2y^2+2xy-1)$
$=xy(2xy)$
$=2x^2y^2 \neq 0$
$\therefore I.f =\dfrac 1{Mx-Ny}=\dfrac 1{2x^2y^2}$
Multiplying eq(1) by I.f we get
$\dfrac {(x^2y^2+1)y}{2x^2y^2}dx + x\Bigg(\dfrac {x^2y^2-2xy+1}{2x^2y^2}\Bigg)dy=0$
$\therefore \Bigg(\dfrac y2+\dfrac 1{2x^2y}\Bigg)dx+\Bigg(\dfrac x2-\dfrac 1y+\dfrac 1{2xy^2}\Bigg)dy=0$
Which is exact
$\int M \space dx=\int\dfrac y2+\dfrac 1{2y}x^{-2}$
$=\dfrac {xy}2+\dfrac 1{2y}\dfrac {x^{-1}}{-1}$
$\int $ (N neglecting x)dy=$\int \dfrac {-1}y dy=-\log y$
$\therefore$ complete solution is
$\dfrac {xy}2-\dfrac 1{2xy}-\log y +c =0$