| written 9.5 years ago by | • modified 9.5 years ago |
(1) According to differentiation property
$L^{-1}log\frac{s^2 + 4}{s^2 + 9} = \frac{-1}{t}L^{-1}\frac{d}{ds}[log(s^2 + 4) - log(s^2 + 9)]$
$L^{-1}log\frac{s^2 + 4}{s^2 + 9} = \frac{-1}{t}L^{-1}\bigg[\frac{2s}{s^2 + 4} - \frac{2s}{s^2 + 9}\bigg]$
$L^{-1}log\frac{s^2 + 4}{s^2 + 9} = \frac{-1}{t}[2cos2t - 2cos3t]$
$L^{-1}log\frac{s^2 + 4}{s^2 + 9} = \frac{2}{t}(cos3t - cos2t)$
(2) By convolution theorem
$\phi_{1}(s) = \frac{s}{s^2 + 4}$
$f_{1}(t) = cos2t$
$\phi_{2}(s) = \frac{s}{s^2 + 9}$
$f_{2}(t) = \frac{1}{3}sin3t$
$\therefore$ According to definition
$L^{-1}\bigg[\frac{s}{(s^2 + 4)(s^2 + 9)}\bigg] = \int\limits_{0}^{t}\frac{1}{2}cos2u*cos3(t - u)du$
$L^{-1}\bigg[\frac{s}{(s^2 + 4)(s^2 + 9)}\bigg] = \frac{1}{2}\int\limits_{0}^{t}(sin(2u + 3t - 3u) - sin(2u - 3t + 3u))du$
$L^{-1}\bigg[\frac{s}{(s^2 + 4)(s^2 + 9)}\bigg] = \frac{1}{2}\int\limits_{0}^{t}sin(3t - u) - sin(5u - 3t)du$
$L^{-1}\bigg[\frac{s}{(s^2 + 4)(s^2 + 9)}\bigg] = \frac{1}{2}\bigg[\frac{-cos(3t - u)}{-1} + \frac{cos(5u - 3t)}{5}\bigg]_{0}^{t}$
$L^{-1}\bigg[\frac{s}{(s^2 + 4)(s^2 + 9)}\bigg] = \frac{1}{2}\bigg[cos2t + \frac{cos2t}{5} - cos3t - \frac{cos3t}{5}\bigg]$
$L^{-1}\bigg[\frac{s}{(s^2 + 4)(s^2 + 9)}\bigg] = \frac{1}{2}\bigg[\frac{6cos2t - 6cos3t}{5}\bigg]$
$L^{-1}\bigg[\frac{s}{(s^2 + 4)(s^2 + 9)}\bigg] = \frac{3}{5}[cos2t - cos3t]$

and 4 others joined a min ago.