0
1.3kviews
the motion of a particle is given by $\dfrac {d^2x}{dt^2}=-k^2x-2h\dfrac {dx}{dt}.$ Solve the equation

equation when $h=5, k=4$ taking $x=0,v=v_0$ at $t=0$ show that the time of maximum displacement is independent of the initial velocity.

Mumbai University > First Year Engineering > sem 2 > Applied Maths 2

Marks : 6

Year : 2014

1 Answer
0
16views

$$ \dfrac {d^2x}{dt^2}=-k^2x-2h\dfrac {dx}{dt} \\ \therefore \dfrac {d^2x}{dt^2}+2h\dfrac {dx}{dt}+k^2x=0 \\ D^2x+2hDx+k^2x=0 \space where \space D=\dfrac d{dt} \\ (D^2+2hD+k^2)k=0 $$

Auxillary Equation is $D^2+2hD+k^2=0 \\ $

$\therefore D=\dfrac {-2\pm\sqrt{4h^2-4k^2}}2\\ D=-h\pm \sqrt{h^2-k^2}\\ \therefore Y_c=c_1e^{(-h+\sqrt{h^2-k^2})t}+c_2e^{(-h-\sqrt{h^2-k^2})t}\\ put \space h=5\space and \space k=4 \\ \therefore Y_c=c_1e^{-2t}+c_2e^{-8t} \\ $

Now it is given that

$ When …

Create a free account to keep reading this post.

and 5 others joined a min ago.

Please log in to add an answer.