written 9.5 years ago by
teamques10
★ 70k
|
•
modified 9.5 years ago
|
$$ \dfrac {d^2x}{dt^2}=-k^2x-2h\dfrac {dx}{dt} \\ \therefore \dfrac {d^2x}{dt^2}+2h\dfrac {dx}{dt}+k^2x=0 \\ D^2x+2hDx+k^2x=0 \space where \space D=\dfrac d{dt} \\ (D^2+2hD+k^2)k=0 $$
Auxillary Equation is $D^2+2hD+k^2=0 \\ $
$\therefore D=\dfrac {-2\pm\sqrt{4h^2-4k^2}}2\\ D=-h\pm \sqrt{h^2-k^2}\\ \therefore Y_c=c_1e^{(-h+\sqrt{h^2-k^2})t}+c_2e^{(-h-\sqrt{h^2-k^2})t}\\ put \space h=5\space and \space k=4 \\ \therefore Y_c=c_1e^{-2t}+c_2e^{-8t} \\ $
Now it is given that
$ When …
Create a free account to keep reading this post.
and 5 others joined a min ago.