0
1.0kviews
Evaluate the $\int\limits_0^1\int\limits_0^xe^{x+y}dydx$
1 Answer
| written 9.5 years ago by |
Integrating first w.r.t. y
$$I=\int\limits_0^1e^x[e^y]^x_0dx$$
$I=\int\limits_0^1e^x[e^x-1]dx\\ =\int\limits_0^1e^{2x}-e^xdx\\ I=[e^{2x}-e^x]^1_0\\ =\Bigg[\dfrac {e^2}2-e^1\Bigg]-\Bigg[\dfrac 12-1\Bigg]\\ =\dfrac {e^2}2-e^1+\dfrac 12\\ =\dfrac 12[e^2-2e^1+1]\\ =\dfrac 12(e-1)^2$