written 3.2 years ago by | modified 3.1 years ago by |
Verify Green’s theorem in the plane for ∫c{(xy + y2)dx + x2dy} where C is the closed curve of the region bounded by y = x and y = x2.
written 3.2 years ago by | modified 3.1 years ago by |
Verify Green’s theorem in the plane for ∫c{(xy + y2)dx + x2dy} where C is the closed curve of the region bounded by y = x and y = x2.
written 3.2 years ago by |
$Now,\ we\ have\ to\ find\ the\ intersection\ of\ y=x\ and\ y=x^2.$
$RHS = x = x^2 $
$ x - x^2 = 0$
$ \Rightarrow x (1-x)= 0$
$i.e.\ x = 0,1$
$Hence,\ (0,0)\ and\ (1,1)\ will\ be\ the\ points\ of\ intersections.$
$According\ to\ Green's\ theorem,$
$\begin{aligned} \int_{c} M\ dx + N\ dy = \int_{} \int_{R} \left(\frac{\partial N}{\partial x} -\frac{\partial M}{\partial y}\right) d x \ d y \\ & \end{aligned}$
$According\ to\ the\ question,\ $
$\begin{aligned} \int_{c} (xy + y^2)\ dx + x^2\ dy = \end{aligned}$
$ = \begin{aligned} \int_{OA} ((xy + y^2)\ dx + x^2\ dy)\ + \int_{AO} ((xy + y^2)\ dx + x^2\ dy)\ = \end{aligned}$
$ = I_1 + I_2$
$Along\ OA,\ we\ have\ y\ = x^2,$
$\therefore dy\ = 2xdx\ and\ x\ varies\ from\ 0\ to\ 1$
$ I_1 = \begin{aligned} \int_{x=0}^{1} (x . x^2 + x^4)\ dx + x^2.2x\ dx \end{aligned}$
$ = \begin{aligned} \int_{x=0}^{1} (3x^3 + x^4) dx \end{aligned}$
$ = \begin{aligned} \left (\frac {3x^4} {4} + \frac {x^5}{5} \right)_0^{1} = \frac{3}{4} + \frac {1}{5} = \frac{19}{20}\end{aligned}$
$Along\ AO,\ we\ have\ y = x$
$\therefore\ dy = dx$
$x\ varies\ from\ 1\ to\ 0$
$ I_2 = \begin{aligned} \int_{1}^{0} (x . x + x^2)\ dx + x^2\ dx \end{aligned}$
$ = \begin{aligned} \int_{1}^{0} 3x^2 dx = [x^3]_1^{0} = -1 \end{aligned}$
$Hence,$
$L.H.S.\ =\ I_1 + I_2 = \frac{19}{20} - 1 = \frac{-1}{20}$
$Also,$
$R.H.S.\ =\ \begin{aligned} \int \int_{R} \left(\frac{\partial N}{\partial x} -\frac{\partial M}{\partial y}\right)\ dx\ dy \end{aligned}$
$where,\ N = x^2\ and\ M = xy + y^2$
$\Rightarrow \begin{aligned} \left (\frac{\partial N}{\partial x} \right) = 2x\ ,\ \left (\frac{\partial M}{\partial y} \right) = x + 2y \end{aligned}$
$R\ is\ the\ region\ bounded\ by\ y\ =\ x^2\ and\ y\ =\ x$
$\begin{aligned} \int_{} \int_{R} \left(\frac{\partial N}{\partial x} -\frac{\partial M}{\partial y}\right) dx\ dy \end{aligned}$
$ = \begin{aligned} \int_{x=0}^1 \int_{y=x^2}^{x} \left(2x - x- 2\right) dy\ dx \end{aligned}$
$ = \begin{aligned} \int_{x=0}^1 \int_{y=x^2}^{x} \left(x - 2y\right) dy\ dx \end{aligned}$
$ = \begin{aligned} \int_{x=0}^{1} \left(xy - y^2\right)_{y-x^2}^{x} dx \end{aligned}$
$ = \begin{aligned} \int_{x=0}^{1} \left((x^2 - x^2\right) - (x^3 - x^4)) dx \end{aligned}$
$ = \begin{aligned} \int_{x=0}^{1} \left(x^4 - x^3\right)dx \end{aligned}$
$ = \begin{aligned} \left(\frac {x^5}{5} - \frac {x^4}{4} \right)_0^{1} = (\frac {1}{5} - \frac {1}{4}) = \frac{-1}{20} \end{aligned}$
$\therefore L.H.S. = R.H.S. = \frac {-1}{20}$