0
1.4kviews
Evaluate $\int\int\int x^2yz\space dx\space dy\space dz$ throughout the volume bounded by $x = 0, y = 0, z = 0, x + y + z = 1.$
1 Answer
0
6views

$$Let \space I=\int\int\int x^2yz\space dx\space dy\space dz $$ $ Tetrahedron: \space x + y + z = 1 \\ \therefore I=\int\limits_0^1\int\limits_0^{1-x}\int\limits_0^{1-x-y} x^2yz\space dz\space dy\space dx\\ I= \int\limits_0^1\int\limits_0^{1-x}x^y \int\limits_0^{1-x-y}z\space dz\space dy\space dx\\ I= \int\limits_0^1\int\limits_0^{1-x}x^2y\Bigg[\dfrac {z^2}2\Bigg]_0^{1-x-y}dydz\\ I=\dfrac 12\int\limits_0^1\int\limits_0^{1-x}x^2[y(1-x-y)^2-0]dydx\\ I=\dfrac 12\int\limits_0^1x^2\int\limits_0^{1-x}[y(1-x)^2-2(1-x)y+y^2]dydx\\ I=\dfrac 12\int\limits_0^1x^2\int\limits_0^{1-x}[(1-x^2)y-2(1-x)y^2+y^3]dydx\\ I=\dfrac 12\int\limits_0^1 x^2\Bigg[(1-x)^2\dfrac {y^2}2-2(1-x)\dfrac {y^3}3+\dfrac {y^4}4\Bigg]_0^{(1-x)}dx\\ I=\dfrac 12\int\limits_0^1 x^2\Bigg[\dfrac {(1-x)^2(1-x)^2}2-\dfrac 23(1-x)(1-x)^3 +\dfrac {(1-x)^4}4\Bigg]dx\\ I=\dfrac 12\int\limits_0^1x^2(1-x)^4\Bigg[\dfrac 12-\dfrac 23+\dfrac 14\Bigg] dx\\ I=\dfrac 1{24}\int\limits_0^1 x^2(1-x)^4 dx$

By Beta Gamma formula

$=\dfrac 1{24}B(3,5)\\ =\dfrac 1{24}\dfrac {)\overline3)\overline5}{)\overline8}\\ =\dfrac 1{24}\dfrac {2\times 4!}{7!}\\ =\dfrac 1{2520}$

Please log in to add an answer.