| written 9.5 years ago by | • modified 9.5 years ago |
Mumbai University > COMPS > Sem 3 > Digital Logic Design and Analysis
Marks: 15 M
Year: Dec 2013
| written 9.5 years ago by | • modified 9.5 years ago |
Mumbai University > COMPS > Sem 3 > Digital Logic Design and Analysis
Marks: 15 M
Year: Dec 2013
| written 9.5 years ago by |




$$F=\underline{ABCD}+\underline{A}B\underline{C}D+A\underline{B}C\underline{D}+BCD\underline{E}+\underline{A}B\underline{E}$$
Let ,$P = \underline{ABCD}, Q=\underline{A}B\underline{C}D, R = A\underline{B}C\underline{D}, S= BCD\underline{E} \ \ and \ \ T= \underline{A}B\underline{E}$
Therefore, F = P+Q+R+S+T
$\underline{\underline{F}}=\underline{\underline{P+Q+R+S+T}}...........\text{Double Inversion} \\ F=\underline{\underline{P}.\underline{Q}.\underline{R}.\underline{S}.\underline{T}}…..\text{De Morgan’s theorem} \\ F=\underline{\underline{\underline{ABCD}}.\underline{\underline{A}B\underline{C}D}.\underline{A\underline{B}C\underline{D}}.\underline{BCD\underline{E}}.\underline{\underline{A}B\underline{E}}}$
