| written 3.7 years ago by | • modified 3.6 years ago |
Let $f, g, h$ be three functions from $R \rightarrow R$ as: $f(x)=2 x^{3}+5, g(x)=\cos x, h(x)=x^{3}-1 .$ Find $h o(g \circ f)$ and $(h o g) o f$. Are they equal?
| written 3.7 years ago by | • modified 3.6 years ago |
Let $f, g, h$ be three functions from $R \rightarrow R$ as: $f(x)=2 x^{3}+5, g(x)=\cos x, h(x)=x^{3}-1 .$ Find $h o(g \circ f)$ and $(h o g) o f$. Are they equal?
| written 3.6 years ago by |
Solution:
$ \begin{array}{ll} F: R \rightarrow R & f(x)=2 x^{3}+5 \\ g: R \rightarrow R & g(x)=\cos x \\ h \in R \rightarrow R & h(x)=x^{3}-1 \end{array} $
$ \begin{aligned} h o(g o f) &=h(g(f(x))) \\ &=h\left(g\left(2 x^{3}+5\right)\right) \\ &=h\left(\cos \left(2 x^{3}+5\right)\right) \\ &=\left(\cos \left(2 x^{3}+5\right)\right)^{3}-1 \\ (h o g) …