Solution:
Given, $\mathrm{a}=\cos \theta+i \sin \theta$
& $\quad \mathrm{~b}=\cos \phi+\mathrm{i} \sin \phi$
(i) $\cos (\theta+\phi)=\frac{1}{2}\left[a b+\frac{1}{a b}\right]$ prove that,
Now, $a b=(\cos \theta+i \sin \theta)(\cos \phi+i \sin \phi)\\
$
$
\Rightarrow a b=\cos (\theta+\phi)+i \sin (\theta+\phi)\\
$
$also, \frac{1}{a b}=(a b)^{-1}=[\cos (\theta+\phi)+i \sin (\theta+\phi)]\\$
$
\Rightarrow \frac{1}{a b}=\cos (\theta+\phi)-i \sin …
Create a free account to keep reading this post.
and 3 others joined a min ago.