3
277views
De Moivre's formula using prove that,

If $a=\cos \theta+i \sin \theta, b=\cos \phi+i \sin \phi$ prove that

(i) $\cos (\theta+\phi)=\frac{1}{2}\left[a b+\frac{1}{a b}\right]$

(ii) $\sin (\theta-\phi)=\frac{1}{2 i}\left[\frac{a}{b}-\frac{b}{a}\right]$

1 Answer
1
2views

Solution:

Given, $\mathrm{a}=\cos \theta+i \sin \theta$

& $\quad \mathrm{~b}=\cos \phi+\mathrm{i} \sin \phi$

(i) $\cos (\theta+\phi)=\frac{1}{2}\left[a b+\frac{1}{a b}\right]$ prove that,

Now, $a b=(\cos \theta+i \sin \theta)(\cos \phi+i \sin \phi)\\ $

$ \Rightarrow a b=\cos (\theta+\phi)+i \sin (\theta+\phi)\\ $

$also, \frac{1}{a b}=(a b)^{-1}=[\cos (\theta+\phi)+i \sin (\theta+\phi)]\\$ $ \Rightarrow \frac{1}{a b}=\cos (\theta+\phi)-i \sin …

Create a free account to keep reading this post.

and 2 others joined a min ago.

Please log in to add an answer.