1
520views
Show that $f:[-1,1] \rightarrow \mathbf{R}$, given by $f(x)=\frac{x}{(x+2)}$ is one-one. Find the inverse of the function $f:[-1,1] \rightarrow$ Range $f$.
1 Answer
2
3views

Solution:

$ f:[-1,1] \rightarrow R \\ $ is given as,

$$ f(x)=\frac{x}{(x+2)} \\ $$

Let, $$ f(x)=f(y) \\ $$

$$ \begin{aligned} &\Rightarrow \frac{x}{x+2}=\frac{y}{y+2} \\\\ &\Rightarrow x y+2 x=x y+2 y \\\\ &\Rightarrow 2 x=2 y \\\\ &\Rightarrow x=y \\ \end{aligned} $$

$\therefore f$, is a one-one function.

It is clear …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.