written 3.6 years ago by
RakeshBhuse
• 3.2k
|
•
modified 3.6 years ago
|
Solution :
Given :
$\mathrm {r_{2}=10 ~r_{1}} $
$\mathrm T_{2}=400 \mathrm{~K}, \mathrm T_{2}=500 \mathrm{~K}, \mathrm T_3=600~\mathrm K$
$\mathrm{R} =1.987 \mathrm{~cal} /(\mathrm{mol}.\mathrm{K}) $
(a) From Arrhenius law
$$
\begin{aligned}
\ln (\mathrm{r}) &=-\frac{\mathrm{E}}{\mathrm{RT}}+\ln \mathrm{k}_{0} \\
\ln \left(\mathrm{r}_{2}/\mathrm{r}_{\mathrm{1}}\right)&=-\frac{\mathrm{E}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right] \\
\ln \left(\mathrm{r}_{2} /\mathrm{r}_{1}\right) &=\frac{\mathrm{E}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]\\
\ln \left(10 r_{1}/r_{1}\right)&=\frac{\mathrm{E}}{1.987}\left[\frac{1}{400}-\frac{1}{500}\right]\\
\mathrm E &= 9150 \mathrm {~cal/mol}
\end{aligned} …
Create a free account to keep reading this post.
and 4 others joined a min ago.