1
518views
Consider $f: \mathbf{R}_{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5 .$ Show that $f$ is invertible with $ f^{-1}(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right) $
| written 3.6 years ago by | • modified 3.6 years ago |
Consider $f: \mathbf{R}_{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5 .$ Show that $f$ is invertible with $ f^{-1}(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right) $
ADD COMMENT
EDIT
1 Answer

and 5 others joined a min ago.
and 3 others joined a min ago.