2
876views
On doubling the concentration of reactant, the rate of reaction triples. Find the reaction order.

On doubling the concentration of reactant, the rate of reaction triples. Find the reaction order.

$$\mathrm {-r_A=k~C^n_A}$$

1
96views

Solution :

At $\mathrm{C}_{\mathrm{A1}}$, the rate is

$$-\mathrm {\mathrm r_{A1}=k C_{A1}^{n}}$$

At $\mathrm{C}_{\mathrm{A} 2}$, the rate is

$$-\mathrm{r}_{\mathrm{A2}}=\mathrm{kC}_{\mathrm{A2}}^{\mathrm{n}}$$

If $$-r_{\mathrm{A}_{2}}=\mathrm{kC}_{\mathrm{A} 2}^{\mathrm{n}}$$

$$\mathrm {C_{A2}}=2 \mathrm {C_{A1}}$$. we have

$$\mathrm{-r_{A2}=3\left(-r_{A1}\right)}$$

$$\mathrm {\frac{-r_{A 2}}{-r_{A 1}}=\frac{k C_{A 2}^{n}}{k C_{A 1}^{n}}}$$

$$\mathrm{\frac{-r_{A 2}}{-r_{A 1}}=\frac{C_{A 2}^{n}}{C_{A 1}^{n}}}$$

$$\frac{3\left(\mathrm{-r_{A 1}}\right)}{\mathrm{-r_{A 1}}}=\frac{\left(2\mathrm {C_{A 1}}\right)^{\mathrm n}}{\left(\mathrm {C_{A 1}}\right)^{\mathrm n}}$$

$$\mathrm {3=2^n}$$

$$\ln 3=\mathrm{n} \ln 2$$

$$1.0986=\mathrm{n}(0.693)$$

$$\mathrm n=1.6$$