0
786views
Find a root of $x^{3}-x-1=0$ using Bisection methed correct to three decimal places.
1 Answer
0
9views

Solution:

$\rightarrow$ Here, $f(x)=x^{3}-x-1=0$

at $x=1$, f(i) $=x-x-1=-1 \quad(-v e)$

$ x=2, \quad f(2)=8-2-1=5(+v e) \\ $

$\therefore$ The root lies between 1 and 2

$$ \begin{array}{|c|c|c|c|c|} \hline \text { Sr.No. } & \text { Negative } & \text { positive } & x_{i}=\frac{4+b}{2} & f(x i) \\ & \text …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.