0
3.1kviews
Find a root of $x^{4}-x^{3}+10 x+7=0$ correct up to three decimal places between $-2$ and $-1$ by Newten Raphson method.
1 Answer
1
307views

Solution:

$ \Rightarrow f(x)=x^{4}-x^{3}+10 x+7=0 \\ $

The root lies between $-2$ and $-1$,

Let $x_{0}=-2$

$ f^{\prime}(x)=4 x^{3}-3 x^{2}+10 \\ $

By the Newton - Raphson method,

$ x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\ $

$ f\left(x_{0}\right)=f(-2)=11\\ $

$ f^{\prime}\left(x_{0}\right)=f^{\prime}(-2)=-34 \\ $

$ \therefore x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f\left(x_{0}\right)}=-2-\frac{11}{(-34)} \\ $

$ \Rightarrow x_{1}=-1.6765 \\ $

$ …

Create a free account to keep reading this post.

and 4 others joined a min ago.

Please log in to add an answer.