0
3.1kviews
Find a root of $x^{4}-x^{3}+10 x+7=0$ correct up to three decimal places between $-2$ and $-1$ by Newten Raphson method.
1 Answer
| written 3.6 years ago by | • modified 3.6 years ago |
Solution:
$ \Rightarrow f(x)=x^{4}-x^{3}+10 x+7=0 \\ $
The root lies between $-2$ and $-1$,
Let $x_{0}=-2$
$ f^{\prime}(x)=4 x^{3}-3 x^{2}+10 \\ $
By the Newton - Raphson method,
$ x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\ $
$ f\left(x_{0}\right)=f(-2)=11\\ $
$ f^{\prime}\left(x_{0}\right)=f^{\prime}(-2)=-34 \\ $
$ \therefore x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f\left(x_{0}\right)}=-2-\frac{11}{(-34)} \\ $
$ \Rightarrow x_{1}=-1.6765 \\ $
$ …