| written 9.5 years ago by | modified 3.8 years ago by |
a) Trapezoidal rule
b) Simpsons 1/3rd rule
c) Simpsons 3/8th rule
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 8
Year : DEC 2015
| written 9.5 years ago by | modified 3.8 years ago by |
a) Trapezoidal rule
b) Simpsons 1/3rd rule
c) Simpsons 3/8th rule
Mumbai University > First Year Engineering > sem 2 > Applied Maths 2
Marks : 8
Year : DEC 2015
| written 9.5 years ago by |
Let $a=0 ,b=6$ and $n=6\\ \therefore h=\dfrac {b-a}n=\dfrac {6-0}6=1\\ Let \space y=e^x$

1) Trapezoidal rule
$\int\limits_a^b f(x)dx=\dfrac h2[(y_0+y_6)+2(y_1+y_2+y_3+y_4+y_5)]\\ =\dfrac 12[(1+403.4)+2(2.718+7.38+20.08+54.59+148.4)]\\ =\dfrac 12 [404.4+2(233.168)]\\ =435.368$
2) Simpsons 1/3rd rule
$\int\limits_a^b f(x)dx=\dfrac h3[(y_0+y_6)+2(y_1+y_3+y_5)+2(y_2+y_4)]\\ =\dfrac 13[(1+403.4)+4(2.718+20.08+148.4)+2(54.59+7.38)]\\ =\dfrac 13 [404.4+4\times 171.198 +2(62.28)]\\ =404.584$
3) Simpsons 3/8th rule
$\int\limits_a^b f(x)dx=\dfrac {3h}8[(y_0+y_6)+2(y_1+y_4+y_5)+2(y_3)]\\ =\dfrac 38[(1+403.4)+3(2.718+54.59+7.38+148.4)+2(20.08)]\\ =\dfrac [404.4+3(213.088) + 40.16]\\ =406.434$