0
820views
Solve the recurrence relation,

Solve the recurrence relation :

$ \begin{aligned} &a_{n}+6 a_{n-1}+12 a_{n-2}+8 a_{n-3}=2^{n}, n \geq 3 \\\\ &a_{0}=0, a_{1}=0, a_{2}=2 \end{aligned} $

1 Answer
0
1views

Solution:

The characteristic equation is,

$ \begin{aligned} \Rightarrow \quad \lambda^{3}+6 \lambda^{2}+12 \lambda+8 &=0 \\\\(\lambda+2)^{3} &=0 \\\\ \quad \lambda =-2,-2,-2 \end{aligned} \\ $

Hence the homogeneous solution is,

$ a_{n}^{(h)}=\left(A_{1} n^{2}+A_{2} n+A_{3}\right)(-2)^{n} \\ $

The particular solution will be of the form $P\left(2^{n}\right)$. Substituting the given recurrence relation, we get,

$ …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.