0
572views
Solve the following recurrence relation : $a_{r}-3 a_{r-1}=2, r \geq 1, a_{0}=1$
1 Answer
| written 3.5 years ago by |
Solution:
The characteristic equation is,
$ \begin{array}{r} \\ (\lambda-3)=0 \\\\ \lambda=3 \\ \end{array} $
Hence the homogeneous solution is,
$ a_{r}^{(h)}=A(3)^{r} \\ $
Particular solution is of the type P (constant),
$ a_{r}=P \\ $
$ a_{r-1}=P \\ $
Substituting the value of $a_{r}$ and $a_{r-1}$ in the given recurrence …