1
18kviews
Euler Theorem : If $ x+y=2e^{\theta} cos\phi \;, \; \; x - y \;=\; 2ie^{\theta} sin\phi \; \;$and u is a function of $x$ and $y$

then prove that $ \dfrac{\partial^2u}{\partial \theta^2} + \dfrac{\partial^2u}{\partial \phi^2} \;=\; 4xy \dfrac{\partial^2 u}{\partial x \partial y} $

1 Answer
5
1.6kviews

x$ +y=2e^{\theta} cos\phi \; \; x - y \;=\; 2ie^{\theta} sin\phi $

$ \\ $

Adding given equations, $ \\ \; \\ \therefore 2x \;=\; 2e^{\theta} cos\phi \; \; + 2ie^{\theta} sin\phi \\ \; \\ \therefore x \;=\; e^{\theta} cos\phi \; \; + ie^{\theta} sin\phi \;=\; e^{\theta} \cdot e^{i\theta} \;=\; e^{\theta + i\phi} \\ \; \\ \therefore \dfrac{\partial x}{\partial \theta} \;=\; e^{\theta + i\phi} (1) \;= e^{\theta + i\phi} \; = \; x \\ \; \\ \dfrac{\partial x}{\partial \phi} \;=\; e^{\theta + i\phi} (1) \;= ie^{\theta + i\phi} \; = \; ix $

$ \\ $

Subtracting given equations,

$ \therefore 2y \;=\; 2e^{\theta} cos\phi \; \; - 2ie^{\theta} sin\phi \\ \; \\ \therefore y \;=\; e^{\theta} cos\phi \; \; - ie^{\theta} sin\phi \;=\; e^{\theta} \cdot e^{-i\theta} \;=\; e^{\theta - i\phi} \\ \; \\ \therefore \dfrac{\partial y}{\partial \theta} \;=\; e^{\theta - i\phi} (1) \;= e^{\theta - i\phi} \; = \; y \\ \; \\ \dfrac{\partial y}{\partial \phi} \;=\; e^{\theta - i\phi} (-i) \;= -ie^{\theta - i\phi} \; = \; -iy $

$ \\ $

Given u is a function of $x$ and $y$ $\$

$ \dfrac{\partial u}{\partial \theta} \;=\; \dfrac{\partial u}{\partial x} \cdot \dfrac{\partial x}{\partial \theta} \;+\; \dfrac{\partial u}{\partial y} \cdot \dfrac{\partial y}{\partial \theta} \\ \; \\ $

$ \therefore \dfrac{\partial u}{\partial \theta} \;=\; x\dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y} $
.......From (i) and (ii) $ \\ $ $ \therefore \dfrac{\partial^2 u}{\partial \theta^2} \;=\; \dfrac{\partial}{\partial \theta} \Bigg[ x\dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y} \Bigg] \\ \; \\ \; \\ = x\dfrac{\partial}{\partial \theta} \Big( \dfrac{\partial u}{\partial x} \Big) + \dfrac{\partial u}{\partial x} \dfrac{\partial x}{\partial \theta} + y \dfrac{\partial}{\partial \theta} \Big( \dfrac{\partial u}{\partial y} \Big) + \dfrac{\partial u}{\partial y} \cdot \dfrac{\partial y}{\partial \theta} \\ \; \\ \; \\ = \dfrac{\partial x}{\partial \theta} \cdot \dfrac{\partial u}{\partial x} + x \Bigg[ \dfrac{\partial}{\partial x} \Big( \dfrac{\partial u}{\partial x} \Big) \dfrac{\partial x}{\partial \theta} + \dfrac{\partial}{\partial y} \Big( \dfrac{\partial u}{\partial x} \Big) \dfrac{\partial y}{\partial \theta} \Bigg] \\ + \dfrac{\partial y}{\partial \theta} \cdot \dfrac{\partial u}{\partial y}+ y \Bigg[ \dfrac{\partial}{\partial x} \Big( \dfrac{\partial u}{\partial y} \Big) \dfrac{\partial x}{\partial \theta} + \dfrac{\partial}{\partial y} \Big( \dfrac{\partial u}{\partial y} \Big) \dfrac{\partial y}{\partial \theta} \Bigg] \\ \; \\ \; \\ \; \\ =x \dfrac{\partial u}{\partial x}+ x \bigg[ x\dfrac{\partial^2 u}{\partial x^2} + y\dfrac{\partial^2 u}{\partial y \partial x} \bigg] + \\ y \dfrac{\partial u}{\partial y}+ y \bigg[ x\dfrac{\partial^2 u}{\partial x \partial y} + y\dfrac{\partial^2 u}{\partial y^2} \bigg] \\ \; \\ \; \\ = x \dfrac{\partial u}{\partial x}+ y \dfrac{\partial u}{\partial y}+ x^2 \dfrac{\partial^2 u}{\partial x^2} + xy \dfrac{\partial^2 u}{\partial x \partial y} + \\ xy \dfrac{\partial^2 u}{\partial x \partial y} + y^2 \dfrac{\partial^2 u}{\partial y^2} \ldots \big\{ \dfrac{\partial^2 u}{\partial y \partial x} = \dfrac{\partial^2 u}{\partial x \partial y} \big\} \\ \; \\ \; \\ \; \\ \therefore \dfrac{\partial^2 u}{\partial {\theta}^2} \;=\; x \dfrac{\partial u}{\partial x}+ y \dfrac{\partial u}{\partial y}+ x^2 \dfrac{\partial^2 u}{\partial x^2} + 2xy \dfrac{\partial^2 u}{\partial x \partial y} + y^2 \dfrac{\partial^2 u}{\partial y^2} $

$\\ \; \\ \; \\$ Now, $ \dfrac{\partial u}{\partial \phi} \;=\; \dfrac{\partial u}{\partial x} \cdot \dfrac{\partial x}{\partial \phi} \;+\; \dfrac{\partial u}{\partial y} \cdot \dfrac{\partial y}{\partial \phi} $ $ \ \; \ $ $ \therefore \dfrac{\partial u}{\partial \phi} \;=\; \dfrac{\partial u}{\partial x} (ix) + \dfrac{\partial u}{\partial y} (-iy) $ ........From (i) and (ii) $\$

$ \therefore \dfrac{\partial u}{\partial \phi} \;=\; i \Bigg[ x \dfrac{\partial u}{\partial x} -y \dfrac{\partial u}{\partial y} \Bigg] $

$ \\ $

$ \dfrac{\partial^2 u}{\partial {\phi}^2} \;=\; \dfrac{\partial}{\partial {\phi}} \Bigg\{ i \bigg[ x \dfrac{\partial u}{\partial x} -y \dfrac{\partial u}{\partial y} \bigg] \Bigg\} \\ \; \\ \; \\ \; \\ = i \Bigg\{ x \dfrac{\partial }{\partial \phi} \Big( \dfrac{\partial u}{\partial x} \Big) + \Big( \dfrac{\partial x}{\partial \phi} \Big) \Big( \dfrac{\partial u}{\partial x} \Big) \\ -y \dfrac{\partial }{\partial \phi} \Big( \dfrac{\partial u}{\partial y} \Big) + \Big( \dfrac{\partial y}{\partial \phi} \Big) \Big( \dfrac{\partial u}{\partial y} \Big) \Bigg\} \\ \; \\ \; \\ \; \\ i \Bigg\{ x \bigg[ \dfrac{\partial }{\partial x} \Big( \dfrac{\partial u}{\partial x} \Big) \dfrac{\partial x}{\partial \phi} + \dfrac{\partial }{\partial y} \Big( \dfrac{\partial u}{\partial x} \Big) \dfrac{\partial y}{\partial \phi} \bigg] \;+\; ix \dfrac{\partial u}{\partial x} \\ -y \bigg[ \dfrac{\partial }{\partial x} \Big( \dfrac{\partial u}{\partial y} \Big) \dfrac{\partial y}{\partial \phi} + \dfrac{\partial }{\partial y} \Big( \dfrac{\partial u}{\partial x} \Big) \dfrac{\partial y}{\partial \phi} \bigg] \;+\; ix \dfrac{\partial u}{\partial x} - (-iy \dfrac{\partial u}{\partial y} ) \Bigg\} \\ \; \\ \; \\ \; \\ i \Bigg\{ x \bigg[ (ix) \dfrac{\partial^2 u}{\partial x^2} + (-iy) \dfrac{\partial^2 u}{\partial y \partial x} \bigg] + ix\dfrac{\partial u}{\partial x} \\ - y \bigg[ (ix) \dfrac{\partial^2 u}{\partial x \partial y} + (-iy) \dfrac{\partial^2 u}{\partial y^2} \bigg] + iy\dfrac{\partial u}{\partial y} \Bigg\} \\ \; \\ \; \\ \; \\ = i^2 \Bigg \{ x^2 \dfrac{\partial^2 u}{\partial x^2} -xy \dfrac{\partial^2 u}{\partial y \partial x} + x \dfrac{\partial u}{\partial x} \\ -xy \dfrac{\partial^2 u}{\partial x \partial y} + y^2\dfrac{\partial^2 u}{\partial y^2} + y \dfrac{\partial u}{\partial y} \Bigg\} $

$ \\ \; \\ \; \\ $

$ = -1 \Bigg \{ x^2 \dfrac{\partial^2 u}{\partial x^2} -2xy \dfrac{\partial^2 u}{\partial y \partial x} + x \dfrac{\partial u}{\partial x} + y^2\dfrac{\partial^2 u}{\partial y^2} + y \dfrac{\partial u}{\partial y} \Bigg\} $

$ \\ \; \; i^2 =-1 \\ \& \dfrac{\partial^2 u}{\partial y \partial x} \;=\; \dfrac{\partial^2 u}{\partial x \partial y} \\ \; \\ \; \\ \; \\ \therefore \dfrac{\partial^2 u}{\partial \phi^2} \;=\; -x^2 \dfrac{\partial^2 u}{\partial x^2} + \\ 2xy \dfrac{\partial^2 u}{\partial y \partial x} -y^2 \dfrac{\partial^2 u}{\partial y^2}- x \dfrac{\partial u}{\partial x} - y \dfrac{\partial u}{\partial y} \; \; \ldots (iv) \\ \; \\ \; \\ \; \\ \therefore \dfrac{\partial^2 u}{\partial \theta^2} + \dfrac{\partial^2 u}{\partial \phi^2} \; = \; x^2 \dfrac{\partial^2 u}{\partial x^2} + 2xy \dfrac{\partial^2 u}{\partial y \partial x} +y^2 \dfrac{\partial^2 u}{\partial y^2}+ x \dfrac{\partial u}{\partial x} + \\ y \dfrac{\partial u}{\partial y} -x^2 \dfrac{\partial^2 u}{\partial x^2} + \\ 2xy \dfrac{\partial^2 u}{\partial y \partial x} -y^2 \dfrac{\partial^2 u}{\partial y^2}- x \dfrac{\partial u}{\partial x} - y \dfrac{\partial u}{\partial y} \\ \; \\ \; \\ \; \\ = 4xy \dfrac{\partial^2 u}{\partial x \partial y} \\ \; \\ \; \\ \; \\ $

$ \dfrac{\partial^2 u}{\partial \theta^2} + \dfrac{\partial^2 u}{\partial \phi^2} \;=\; 4xy \dfrac{\partial^2 u}{\partial x \partial y} $ ............Hence Proved

Please log in to add an answer.