0
2.4kviews
Prove that, A non- empty subset $\mathrm{H}$ of a group $(\mathrm{G}, *)$ to be a subgroup is $\mathrm{a} \in \mathrm{H}, \mathrm{b} \in \mathrm{H} \rightarrow \mathrm{a}^* \mathrm{~b}^{-1}$...
| written 3.1 years ago by | • modified 3.1 years ago |
Prove that, A non- empty subset $\mathrm{H}$ of a group $(\mathrm{G}, *)$ to be a subgroup is $\mathrm{a} \in \mathrm{H}, \mathrm{b} \in \mathrm{H} \rightarrow \mathrm{a}^* \mathrm{~b}^{-1} \in \mathrm{H}$
ADD COMMENT
EDIT
1 Answer

and 2 others joined a min ago.