| written 3.1 years ago by |
Solution:
$ \begin{aligned}\\ &S=\frac{2}{T}\left(\frac{1-2^{-1}}{1+2^{-1}}\right)\\\\ &=2\left(\frac{1-z^{-1}}{1+z^{-1}}\right) \text {. }\\\\ &\left[2\left(\frac{1-z^{-1}}{1+z^{-1}}\right)+0.1\right]^2+9\\\\ &=\frac{2\left(1-z^{-1}\right)+0.1\left(1+z^{-1}\right)\left(1+z^{-1}\right)}{\frac{\left(2\left(1-z^{-1}\right)+0.1\left(1+z^{-1}\right)\right)^2}{\left(1+z^{-1}\right)^2}+9}\\ \end{aligned}\\ $
$ H[z]=\frac{\left[2\left(1-z^{-1}\right)+0.1\left(1+z^{-1}\right)\right]\left(1+z^{-1}\right)}{\left[2\left(1-z^{-1}\right)+0.1\left(1+z^{-1}\right)\right]^2+9\left(1+z^{-1}\right)^2}\\ $
By Impulse Invariant method:
$ H(s)=\frac{s+0.1}{(s+0.1)^2+9}\\ $
The inverse L.T. of the given function is
$ \begin{aligned}\\ h(t) &=e^{-0.1 t} \cos (3 t) & & \text { for } t \geqslant 0 \\\\ &=0 & …

and 4 others joined a min ago.
and 3 others joined a min ago.