0
6.0kviews
Find the DFT of a sequence x(n)= {1,1,0,0} and find the IDFT of Y(K)= {1,0,1,0}
1 Answer
0
342views

Solution:

Let us assume $N=L=4$.

$ \begin{aligned}\\ & \text { We have } X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi n k / N} \quad k=0,1, \ldots, N-1 \\\\ & \qquad \begin{aligned}\\ X(0)=\sum_{n=0}^3 x(n) & =x(0)+x(1)+x(2)+x(3) \\\\ & =1+1+0+0=2\\ \end{aligned}\\ \end{aligned}\\ $

$ \begin{aligned} X(1)=\sum_{n=0}^3 x(n) e^{-j \pi n / 2} & …

Create a free account to keep reading this post.

and 5 others joined a min ago.

Please log in to add an answer.