0

3.2kviews

Determine if the following systems are time-invariant or time-variant. (i) $y(n)=x(n)+x(n-1)$ (ii) $y(n)=x(-n)$

**1 Answer**

0

3.2kviews

Determine if the following systems are time-invariant or time-variant. (i) $y(n)=x(n)+x(n-1)$ (ii) $y(n)=x(-n)$

0

532views

written 17 months ago by |

**Solution:**

**(i) $y(n)=x(n)+x(n-1)$**

**Given:**

output of the system $y(n)=x(n)+x(n-1)$

**If the input is delayed by ' $\mathrm{k}$ ' units in time, we have**

$ y(n, k)=x(n-k)+x(n-k-1) $

**If the output is delayed by ' k ' units in time, then $(n-\gtn-k)$**

$ y(n-k)=x(n-k)+x(n-k-1) $

Here, $y(n, k)=y(n-k)$

**Therefore, the system is time-invariant.**

**(ii) $y(n)=x(-n)$**

**Given:**

output of the system $y(n)=x(-n)$

**If the input is delayed by ' $\mathrm{k}$ ' units in time, we have,**

$ y(n, k)=x(-n-k) $

**If the output is delayed by ' k ' units in time, then (n->n-k**)

$ y(n-k)=x(-n+k) $

Here, $y(n, k) \neq y(n-k)$

**Therefore, the system is time-variant.**

ADD COMMENT
EDIT

Please log in to add an answer.