0
1.2kviews
Find the trigonometric Fourier series for the periodic signal x(t) as shown in Figure,,

Find the trigonometric Fourier series for the periodic signal x(t) as shown in Figure,,

enter image description here

1 Answer
0
72views

Solution:

Evaluation of, $a_0$

$ \begin{gathered} a_0=\frac{1}{T} \int_{t_0}^{t_0+T} x(t) d t=\frac{1}{4}\left[\int_{-1}^1 1 d t+\int_1^3-1 d t\right]=\frac{1}\\{4}\left[[t]_{-1}^1-1[t]_1^3\right]=\frac{1}{4}[(1-(-1))-(3-1)] \\\\ =\frac{1}{4}[2-2]=\mathbf{0}\\ \end{gathered}\\ $

Evaluation of ,$a_n$

$ \begin{aligned} \boldsymbol{a}_{\boldsymbol{n}} & =\frac{2}{T} \int_{t_0}^{t_{0+T}} x(t) \cos n \Omega_0 t d t=\frac{2}\\{4}\left[\int_{-1}^1 \cos n \Omega_0 t d t+\int_1^3(-1) \cos n \Omega_0 t d t\right] \\\\ & =\frac{1}{2}\left[\left[\frac{\sin n \Omega_0 t}{n \Omega_0}\right]_{-1}^1-\left[\frac{\sin n \Omega_0 t}{n \Omega_0}\right]_1^3\right]=\frac{1}{2}\left[\left[\frac{\sin n \frac{\pi}{2} t}{n \frac{\pi}{2}}\right]_{-1}^1-\left[\frac{\sin n \frac{\pi}{2} t}{n \frac{\pi}{2}}\right]_1^3\right]\\ \end{aligned}\\ $

$ \begin{aligned}\\ =\frac{1}{2}\left(\frac{2}{n \pi}\right)[\sin n & \left.\frac{\pi}{2}-\left(\sin n \frac{\pi}{2}(-1)\right)-\left(\sin n \frac{\pi}{2}(3)-\sin n \frac{\pi}{2}\right)\right] \\\\ & =\left[\frac{1}{n \pi}\right]\left[\sin n \frac{\pi}{2}+\sin n \frac{\pi}{2}-\sin 3 n \frac{\pi}{2}+\sin n \frac{\pi}{2}\right]=\frac{1}{n \pi}\left[3 \sin \frac{n \pi}{2}-\sin \left(2 n \pi-\frac{n \pi}{2}\right)\right] \\\\ & =\frac{1}{n \pi}\left[3 \sin \frac{n \pi}{2}-\left(-\sin n \frac{\pi}{2}\right)\right]=\frac{\mathbf{4}}{n \pi}\left[\sin n \frac{\pi}{2}\right]\\ \end{aligned} $

Evaluation of, $b_n$

$ \boldsymbol{b}_{\boldsymbol{n}}=\frac{2}{T} \int_{t_0}^{t_0+T} x(t) \sin n \Omega_0 t d t=\frac{2}{4}\left[\int_{-1}^1 \sin n \Omega_0 t d t+\int_1^3-\sin n \Omega_0 t d t\right]\\ $

$ \begin{aligned}\\ & =\frac{1}{2}\left[\left[\frac{-\cos n \Omega_0 t}{n \Omega_0}\right]_{-1}^1-\left[\frac{-\cos n \Omega_0 t}{n \Omega_0}\right]_1^3\right]=\frac{1}{2}\left[\left[\frac{-\cos n \frac{\pi}{2} t}{n \frac{\pi}{2}}\right]_{-1}^1+\left[\frac{\cos n \frac{\pi}{2} t}{n \frac{\pi}{2}}\right]_1^3\right] \\\\ & =\frac{1}{2}\left[\frac{-2}{n \pi}\left(\cos n \frac{\pi}{2}-\cos n \frac{\pi}{2}(-1)\right)+\frac{2}{n \pi}\left(\cos n \frac{\pi}{2}(3)-\cos n \frac{\pi}{2}\right)\right] \\\\ & =\frac{1}{2}\left[0+\frac{2}{n \pi}\left(\cos \left(2 n \pi-\frac{n \pi}{2}\right)-\cos n \frac{\pi}{2}\right)\right]=\left[\frac{1}{n \pi}\left(\cos n \frac{\pi}{2}-\cos n \frac{\pi}{2}\right)\right]=\mathbf{0} \end{aligned}\\ $

Trigonometric Fourier series,

$ \begin{aligned} x(t)=a_0+\sum_{n=1}^{\infty} & a_n \cos n \Omega_0 t+\sum_{n=1}^{\infty} b_n \sin n \Omega_0 t\\ \\ & =\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi}{2}\right) \cos n \Omega_0 t=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi}{2}\right) \cos n \frac{\pi}{2} t\\ \end{aligned}\\ $

Please log in to add an answer.