0
684views
Find the Fourier transform of the rectangular pulse function shown in the figure,

Find the Fourier transform of the rectangular pulse function shown in the figure,

enter image description here

1 Answer
0
50views

Solution:

$ x(t)=\pi(t)=A \quad ; \frac{-T}{2} \leq t \leq \frac{T}{2}\\ $

$ F[\pi(t)]=\int_{-\frac{T}{2}}^{\frac{T}{2}} A e^{-j \Omega t} d t\\ $

$ =A\left[\frac{e^{-j \Omega t}}{-j \Omega}\right]_{-\frac{T}{2}}^{\frac{T}{2}}\\ $

$ =\frac{A}{-j \Omega}\left[e^{-j \Omega \frac{T}{2}}-e^{j \Omega \frac{T}{2}}\right]\\ $

$ =\frac{2 A}{j \Omega}\left[\frac{e^{j \Omega \frac{T}{2}}-e^{-j \Omega \frac{T}{2}}}{2}\right]=\frac{2 A}{\Omega} \sin \Omega \frac{T}{2}\\ $

$ =\frac{2 A}{\Omega …

Create a free account to keep reading this post.

and 4 others joined a min ago.

Please log in to add an answer.