Solution:
$
X(z)=\frac{1}{1-0.6 Z^{-1}+0.08 Z^{-2}}\\
$
$
=\frac{Z^2}{Z^2-0.6 Z+0.08}\\
$
$
\frac{X(Z)}{Z}=\frac{Z}{(Z-0.2)(Z-0.4)}\\
$
$
=\frac{A}{Z-0.2}+\frac{B}{Z-0.4}\\
$
$
A=\left.\frac{Z}{(Z-0.2)(Z-0.4)}(Z-0.2)\right|_{Z=0.2}\\
$
$
=-1 \quad B=\left.\frac{Z}{(Z-0.2)(Z-0.4)}(Z-0.4)\right|_{Z=0.4}=2\\
$
$
\therefore \frac{X(Z)}{Z}=\frac{-1}{Z-0.2}+\frac{2}{Z-0.4}\\
$
$
X(Z)=\frac{-Z}{Z-0.2}+\frac{2 Z}{Z-0.4}\\
$
Applying inverse Z-transform,
$
x(n)=-(0.2)^n u(n)+2(0.4)^n u(n)\\
$
Create a free account to keep reading this post.
and 5 others joined a min ago.