0
490views
Determine the frequency response and impulse response, $$ y(n)-\frac{1}{6} y(n-1)-\frac{1}{6} y(n-2)=x(n) $$
1 Answer
0
2views
| written 3.0 years ago by |
Solution:
$ y(n)-\frac{1}{6} y(n-1)-\frac{1}{6} y(n-2)=x(n)\ $
Applying DTFT,
$ Y\left(e^{j \omega}\right)-\frac{1}{6} e^{-j \omega} Y\left(e^{j \omega}\right)-\frac{1}{6} e^{-2 j \omega} Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right)\ $
Frequency response,
$ H\left(e^{j \omega}\right)=\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)}=\frac{1}{1-\frac{1}{6} e^{-j \omega}-\frac{1}{6} e^{-2 j \omega}}\\ $
$ =\frac{e^{2 j \omega}}{e^{2 j \omega}-\frac{1}{6} e^{j \omega}-\frac{1}{6}}\\ $
$ \begin{gathered}\\ \frac{H\left(e^{j \omega}\right)}{e^{j \omega}}=\frac{e^{j \omega}}{e^{2 …
ADD COMMENT
EDIT
Please log in to add an answer.

and 4 others joined a min ago.