0
2.8kviews
Find the inverse DFT of $X(k)=\{1,2,3,4\}$.
1 Answer
0
427views

Solution:

The inverse DFT is defined as,

$ x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi n k / N}, n=0,1,2,3, \ldots, N-1\\ $

$ \begin{aligned} & \text { Given } N=4, x(n)=\frac{1}{4} \sum_{k=0}^3 X(k) e^{j 2 \pi n k / N}, n=0,1,2,3 \\\\ & \text { When } n=0 \\\\ & …

Create a free account to keep reading this post.

and 4 others joined a min ago.

Please log in to add an answer.