0
423views
The signal $x(t)$ has FTP $T_0=1 \&$ the following Fourier coefficients, $C_k=\left\{\begin{array}{cc}\left(-\frac{1}{3}\right)^k, & k \geq 0 \\ 0, & k<0\end{array}\right.$ Find $x(t)$
1 Answer
0
0views

Solution:

$ \mathrm{x}(t)=\sum_{k=-\infty}^{\infty} C_k \mathrm{e}^{j k \omega_0 t}=\sum_{k=0}^{\infty}\left(-\frac{1}{3}\right)^k \mathrm{e}^{j k \omega_0 t}\\ $

$ \begin{aligned}\\ & =\sum_{k=0}^{\infty}\left(-\frac{1}{3} \mathrm{e}^{j \omega_0 t}\right)^k \\\\ & =1+\left(-\frac{1}{3} \mathrm{e}^{j \omega_0 t}\right)+\left(-\frac{1}{3} \mathrm{e}^{j \omega_0 t}\right)^2 \\\\ & =\frac{1}{\left(1+\frac{1}{3} \mathrm{e}^{j \omega_0 t}\right)} \\\\ & =\frac{1}{\left(1+\frac{1}{3} \mathrm{e}^{j 2 \pi t}\right)}\\ \end{aligned} $

$ \begin{aligned} c_n & =\frac{A}{T} \int_0^d …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.