Solution:
$
\mathrm{X}(S)=\frac{S^2+9 S+1}{S\left[S^2+6 S+8\right]}\\
$
$
=\frac{S^2+9 S+1}{S(S+4)(S+2)}\\
$
$
=\frac{A}{S}+\frac{B}{(S+4)}+\frac{C}{(S+2)}\\
$
$
S^2+9 S+1=A(S+4)(S+2)+\mathrm{B} S(S+2)+\mathrm{C} S(S+4)\\
$
$
\therefore X(S)=\frac{\frac{1}{8}}{S}+\frac{-\frac{19}{8}}{(S+4)}+\frac{\frac{13}{4}}{(S+2)}\\
$
Applying inverse Laplace transform,
$
x(t)=\frac{1}{8} u(t)-\frac{19}{8} e^{-4 t} u(t)+\frac{13}{4} e^{-2 t} u(t)\\
$
i) $\boldsymbol{R e}(\boldsymbol{s})\gt0$
ROC lies a right side of all poles,
$
\therefore …
Create a free account to keep reading this post.
and 4 others joined a min ago.