0
489views
Compute the DFT of the following two sequences, $h[n]=\{1,3,-1,-2\} \quad$ and $\quad x[n]=\{1,2,0,-1\}$
1 Answer
0
6views

Solution:

where $N=4 \Rightarrow e^{j \frac{2 \pi}{N}}=e^{j \frac{2 \pi}{4}}=e^{j \frac{\pi}{2}}=j$

$H(k)=\sum_{n=0}^3 h[n] e^{-j \frac{\pi}{2} n k} \quad$ for $\quad k=0,1,2,3$

$ \begin{aligned} & H(0)=h[0]+h[1]+h[2]+h[3]=1 \\\\ & H(1)=h[0]+h[1] e^{-j \pi / 2}+h[2] \cdot e^{-j \pi}+h[3] \cdot e^{-j 3 \pi / 2}=2-j 5 \\\\ & H(2)=h[0]+h[1] e^{-j \pi}+h[2] \cdot e^{-j 2 \pi}+h[3] …

Create a free account to keep reading this post.

and 2 others joined a min ago.

Please log in to add an answer.